выполненным на конденсаторе, двух резисторах и блоке логического элемента, выход которого соединен с фильтром, конденсаторах, выход выполненным на стабилизатору подключен которого К напряжения, выполненном на стабилитронах, выход которого соединен с фильтром низких выполненным на операционном частот, резисторах усилителе, пяти И трех которого через конденсаторах, выход биполярный источник питания, представляющий собой два последовательно встречно включенных источника питания, выполненных на двух суперконденсаторах, подключен К компаратору, выполненному на операционном усилителе и трех резисторах, а выход компаратора подключен к входу устройства гальванической развязки, оптронной выполненному на паре, логическом элементе и двух резисторах, соединен с С-входом выход которого триггера управления, выполненным логическом элементе триггере, выход которого подключен к входу генератора выполненному эталонной частоты, оптоэлектронной паре, логическом элементе резисторах, при этом выход и двух ко входу подключен блока логической обработки сигнала, выполненному выходы которого логическом элементе, включены на буферную память, выполненную на логических элементах, импульсы с которой поступают на дешифраторы, выполненные на триггерах, выходы которых соединены с соответствующими разрядами отсчетного устройства-индикатора.

Федеральное государственное автономное образовательное учреждение высшего образования

«Крымский федеральный университет имени В.И. Вернадского» (RU)


295007 Республика Крым, г. Симферополь, проспект Академика Вернадского, 4

Отдел интеллектуальной собственности, стандартизации и метрологического обеспечения

Начальник отдела: Чвелёва Людмила Ивановна Тел. раб. +7(3652)51 08 69 Тел. моб. +7(978)72 44 681 E-mail:chvelyova@mail.ru

г. Симферополь, ул. Павленко, 3, каб. 205

КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ имени в.и. вернадского

Отдел интеллектуальной собственности, стандартизации и метрологического обеспечения

ЭЛЕКТРОТЕХНИКА №1

2018 г.

Патент на полезную модель № 185970

Авторы:

Бекиров Эскендер Алимович, Асанов Марлен Мустафаевич, Быков Михаил Александрович, Воскресенская Светлана Николаевна

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФАЗЫ КОЛЕБАНИЙ

Полезная модель относится электрорадиоизмерительной технике И может быть использована для измерения фазового сдвига между гармоническими колебаниями в области низких частот. Устройство содержит формирователь управляющих импульсов, два канала, каждый ИЗ которых включает последовательно соединенные двухсторонний ограничитель напряжений компаратор, канала, усилитель И формирователь импульсов, делитель, обостритель фронта, соединенный формирователем первого канала сумматором, соединенным с генератором импульсов, соединенным счетных пересчетной схемой первого канала и вторым генератором счетных импульсов, соединенным последовательно шифратором, дешифратором жидкокристаллическим индикатором, делитель второго канала соединен через генератор счетных импульсов с пересчетной схемой второго канала И вторым генератором счетных импульсов, кварцевым генератором, соединенным с пересчетной схемой второго канала. Технический результат заключается повышении точности измерения.

Техническое решение относится к электрорадиоизмерительной технике и может быть использовано для измерения фазового сдвига между гармоническими колебаниями в области низких частот.

В основу технического решения поставлена задача создания высокоточного и помехоустойчивого измерителя фазового сдвига в расширенном диапазоне частот путем аналого-цифрового преобразователя и перемножителей узлов, имеющих ограниченное быстродействие.

Целью технического решения является повышение точности измерения.

Формула полезной модели

Устройство измерения фазы ЛЛЯ колебаний, включающее формирователь управляющих импульсов, отличающееся тем, что содержит два канала, каждый из которых включает последовательно соединенные двухсторонний ограничитель напряжений усилитель канала, И компаратор, формирователь импульсов, делитель, обостритель фронта, соединенный формирователем первого канала сумматором, соединенным с генератором импульсов, счетных соединенным пересчетной схемой первого канала и вторым генератором счетных импульсов, соединенным последовательно шифратором, дешифратором И жидкокристаллическим индикатором, делитель второго канала соединен через генератор счетных импульсов с пересчетной схемой второго канала И вторым генератором счетных импульсов, И кварцевым генератором, соединенным с пересчетной схемой второго канала.

Патент на полезную модель № 185973

Авторы:

Бекиров Эскендер Алимович, Муртазаев Эннан Рустамович, Асанов Марлен Мустафаевич, Эбубекиров Эскендер Айдерович

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПЕРИОДА КОЛЕБАНИЙ

Полезная модель относится к электронике и измерительной технике, а именно к измерителям периодов инфранизкочастотных сигналов. Технический результат заключается в расширении функциональных возможностей устройства за счет измерения периода низкочастотных обнаружения колебаний наличия модулированных режимов электроэнергетических системах и сетях. Техническое решение относится электронике и измерительной технике, а именно измерителям периодов инфранизкочастотных сигналов.

Формула полезной модели

Устройство ДЛЯ измерения периода колебаний, содержащее выпрямитель, биполярный источник питания, генератор импульсов, блок индикации, отличающееся тем, ЧТО генератор импульсов выполнен в виде генератора эталонной частоты, а блок индикации выполнен в виде отсчетного устройстваиндикатора, выполненного на логическом элементе, при этом выход делителя напряжения выполнен на двух резисторах и соединён с входом выпрямителя,