

Федеральное государственное автономное образовательное учреждение высшего образования

«Крымский федеральный университет имени В.И. Вернадского»

295007 Республика Крым, г. Симферополь, проспект Академика Вернадского, 4

Отдел интеллектуальной собственности, стандартизации и метрологического обеспечения

Начальник отдела: Чвелёва Людмила Ивановна Тел. раб. +7(3652)51 08 69 Тел. моб. +7(978)72 44 681 E-mail:chvelyova@mail.ru

г. Симферополь, ул. Ялтинская, 20, каб. 308

КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ имени в.и. вернадского

Отдел интеллектуальной собственности, стандартизации и метрологического обеспечения

ФИЗИКА ТВЕРДОГО ТЕЛА № 1

2022 г.

Патент на изобретение № 2771168

Авторы:

Могиленец Юлия Александровна Селезнева Кира Андреевна Стругацкий Марк Борисович Ягупов Сергей Владимирович

СПОСОБ ПОВТОРНОГО ИСПОЛЬЗОВАНИЯ РАСТВОРА-РАСПЛАВА ПРИ СИНТЕЗЕ БОРАТА ЖЕЛЕЗА

Изобретение относится к области получения монокристаллов бората железа. Для получения высокосовершенных монокристаллов на основе бората железа FeBO₃ обычно используют раствор-расплавный метол. основу изобретения поставлена задача разработать способ повторного использования растворрасплава Fe₂O₃ - B2O₃ - PbO - PbF₂, слитого первоначального после синтеза монокристаллов бората PeBO₃. железа Предложено восстанавливать исходную концентрацию железа в использованном раствор-расплаве путем добавления в него Fe₂O₃. Повторное оксида железа использование раствор-расплава Fe₂O₃ - B₂O₃ - PbO - PbF₂ для синтеза монокристаллических структур на основе бората железа на затравку дает возможность повысить эффективность раствор-расплавного метода синтеза FeBO₃. Поставленная задача решается тем, что способ повторного использования раствор-расплава при синтезе бората железа, включающее следующие компоненты раствор-расплава Fe_2O_3 - B_2O_3 - PbO - PbF₂, вычисление количества оксида железа, израсходованного при синтезе FeBO₃, досыпку рассчитанного количества Fe₂O₃ в разогретый до 900°C рентгенофлуоресцентный раствор-расплав, $(P\Phi A)$ раствор-расплава, анализ ЭТОГО гомогенизацию восстановленного растворрасплава при температуре 900°C в течение суток, повторное использование восстановленного раствор-расплава для синтеза FeBO₃.

Отличительные признаки заявленного решения:

- определение количества оксида железа Fe_2O_3 , израсходованного при синтезе монокристаллов $FeBO_3$,
- досыпка порошкообразного Fe₂O₃ в разогретый до 900°C раствор-расплав,
- гомогенизация восстановленного растворрасплава,
- повторное использование растворрасплава, при синтезе монокристаллов $FeBO_3$ методом на затравку в открытом тигле.

В результате серии ростовых экспериментов, установлена возможность успешного синтеза $FeBO_3$ при повторном использовании слитого раствор-расплава $FeBO_3$ - B_2O_3 - PbO - PbF_2 , с добавлением оксида железа $FeBO_3$.

Формула изобретения

Способ повторного использования растворрасплава при синтезе бората железа $FeBO_3$, заключающийся в том, что используют раствор-расплав, содержащий компоненты $Fe_2O_3 - B_2O_3 - PbO - PbF_2$, после синтеза сливают раствор-расплав, далее рентгенофлуоресцентным анализом ($P\Phi A$) определяют концентрацию железа W(Fe) и свинца W(Pb) в слитом раствор-расплаве для вычисления параметра состояния «m» по

формуле $n = \frac{W(Fe)[mass.\%]}{W(Pb)[mass.\%]}$, где W(Fe) - концентрация железа, W(Pb) - концентрация свинца, при этом параметр «п» в исходном растворе-расплаве выбирают равным 0,1, при снижении параметра «п» в слитом растворрасплаве вычисляют количество оксида железа, израсходованного при синтезе FeBO₃, восстанавливают раствор-расплав путем

добавления в него рассчитанного количества FeBO₃ и разогрева до 900°С, проводят гомогенизацию восстановленного растворрасплава при температуре 900°С в течение суток, снова исследуют его методом РФА для контроля состояния, определяя параметр «п», и при приближении значения «п» к исходному используют восстановленный раствор-расплав для повторного синтеза FeBO₃.